2 February 2018, 9:00-12:00

Rijksuniversiteit Groningen Statistics

Resit

RULES FOR THE EXAM:

- The use of a normal, non-graphical calculator is permitted.
- This is a CLOSED-BOOK exam.
- At the end of the exam you can find a chi-squared table.
- Your exam mark : $10 + 90 \times \text{your score}/75$.
- 1. Point estimation [20 Marks]. Let X_1, \ldots, X_n be a sample of independent, identically distributed $N(1, \theta)$ random variables, with density for $\theta \in \mathbb{R}^+$,

$$f_{\theta}(x) = \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{1}{2\theta}(x-1)^2}.$$

- (a) [5 Marks] Determine the Method of Moments estimator $\hat{\theta}$ of θ .
- (b) [5 Marks] Determine whether $\hat{\theta}$ is unbiased.
- (c) [10 Marks] Does $\hat{\theta}$ achieve the Cramer-Rao lower bound? [Hint: You can use the fact that $EX_1^4 = 3\theta^2 + 6\theta + 1$]
- 2. Asymptotic distribution Likelihood Ratio Test statistic 20 Marks. Let $X = (X_1, \ldots, X_n)$ be the observed data, such that

$$X_i \stackrel{\text{i.i.d.}}{\sim} f_{\theta_0}.$$

Let f_{θ} be twice continuously differentiable with support not depending on θ .

Let $\ddot{\theta} = \ddot{\theta}(X)$ be the maximum likelihood estimate of θ .

- (a) Derive the second order Taylor approximation of the log-likelihood $\ell(\theta) = \log f_{\theta}(X_1, \ldots, X_n)$ at the true value $\ell(\theta_0)$ around the MLE $\hat{\theta}$. [5 Marks]
- (b) Show that $\frac{1}{n} \frac{d^2 \ell}{d\theta^2}(\theta_0) \to -I(\theta_0) = E \frac{d^2}{d\theta^2} \log f_{\theta}(X_1)|_{\theta=\theta_0}$ as $n \to \infty$. [5 Marks]
- (c) Use the second order Taylor approximation to show that

$$-2\log LRT \approx -(\hat{\theta} - \theta_0)^2 \frac{d^2\ell}{d\theta^2} (\hat{\theta}).$$

where LRT is the likelihood ratio test statistic. [5 Marks]

(d) Taking the approximation in (c) as an equality, use (b) and (c) together with the asymptotic efficiency of the MLE $\hat{\theta}$ to show that

$$-2\log LRT \rightarrow \chi_1^2$$

in distribution as $n \to \infty$. [5 Marks]

3. Confidence interval 30 Marks.

Let $(Y_1, x_1), ..., (Y_n, x_n)$ be the data, where $\{Y_i\}_{i=1}^n$ are independently and exponentially distributed random variables in the following way:

$$Y_i \sim Ex(\lambda_0 x_i), \quad i = 1, 2, \dots, n$$

i.e.

$$f_{Y_i}(y) = \lambda_0 x_i e^{-\lambda_0 x_i y} \mathbb{1}_{y \ge 0}.$$

The known constants $\{x_i\}$ are strictly positive.

- (a) Derive the maximum likelihood estimator $\hat{\lambda}_n$ for λ_0 . [Hint: Don't forget to show that this is really a maximum.] [10 Marks]
- (b) Determine whether the MLE is a sufficient statistic. [5 Marks]
- (c) Show that for large *n* approximately, $\hat{\lambda}_n \sim N(\lambda_0, \frac{\lambda_0^2}{n})$. [5 Marks]
- (d) Find an expression for a 95% asymptotic confidence interval for λ based on inverting the test statistic statistic $\hat{\lambda}_n$ [Hint: $z_{0.975} = 1.96$]. [10 Marks]
- 4. Optimal testing 15 Marks. Consider 10 i.i.d. observations $X_1, \ldots, X_{10} \sim N(\mu, 81)$, i.e., with density

$$f_X(x) = \frac{1}{\sqrt{2\pi}9} e^{-\frac{1}{162}(x-\mu)^2}$$

We want to test the following hypotheses:

$$egin{array}{ll} H_0: & \mu = 1 \ H_1: & \mu = 2 \end{array}$$

- (a) We want to perform an optimal test with a significance level of at most 5% of the null hypothesis against the alternative. Determine the critical region. [10 Marks]
- (b) What is the power of this test? [5 Marks]

Below statistical tables which may be used in the calculations.

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.0	0.341	0.344	0.346	0.348	0.351	0.353	0.355	0.358	0.360	0.362
1.1	0.364	0.367	0.369	0.371	0.373	0.375	0.377	0.379	0.381	0.383
1.2	0.385	0.387	0.389	0.391	0.393	0.394	0.396	0.398	0.400	0.401
1.3	0.403	0.405	0.407	0.408	0.410	0.411	0.413	0.415	0.416	0.418
1.4	0.419	0.421	0.422	0.424	0.425	0.426	0.428	0.429	0.431	0.432
1.5	0.433	0.434	0.436	0.437	0.438	0.439	0.441	0.442	0.443	0.444
1.6	0.445	0.446	0.447	0.448	0.449	0.451	0.452	0.453	0.454	0.454
1.7	0.455	0.456	0.457	0.458	0.459	0.460	0.461	0.462	0.462	0.463
1.8	0.464	0.465	0.466	0.466	0.467	0.468	0.469	0.469	0.470	0.471
1.9	0.471	0.472	0.473	0.473	0.474	0.474	0.475	0.476	0.476	0.477
$_{-2.0}$	0.477	0.478	0.478	0.479	0.479	0.480	0.480	0.481	0.481	0.482

Table 1: Standard Normal Distribution as found in the book. This means that values in the table correspond to probabilities $P(0 < Z \le z)$, where Z is a standard normal distributed variable.